Logical connectives
Conjuction methods
DrasticAnd
FuzzyLogic.DrasticAnd — Typestruct DrasticAnd <: FuzzyLogic.AbstractAndDrastic T-norm defining conjuction as $A ∧ B = \min(A, B)$ is $A = 1$ or $B = 1$ and $A ∧ B = 0$ otherwise.
EinsteinAnd
FuzzyLogic.EinsteinAnd — Typestruct EinsteinAnd <: FuzzyLogic.AbstractAndEinstein T-norm defining conjuction as $A ∧ B = \frac{AB}{2 - A - B + AB}$.
HamacherAnd
FuzzyLogic.HamacherAnd — Typestruct HamacherAnd <: FuzzyLogic.AbstractAndHamacher T-norm defining conjuction as $A ∧ B = \frac{AB}{A + B - AB}$ if $A \neq 0 \neq B$ and $A ∧ B = 0$ otherwise.
LukasiewiczAnd
FuzzyLogic.LukasiewiczAnd — Typestruct LukasiewiczAnd <: FuzzyLogic.AbstractAndLukasiewicz T-norm defining conjuction as $A ∧ B = \max(0, A + B - 1)$.
MinAnd
FuzzyLogic.MinAnd — Typestruct MinAnd <: FuzzyLogic.AbstractAndMinimum T-norm defining conjuction as $A ∧ B = \min(A, B)$.
NilpotentAnd
FuzzyLogic.NilpotentAnd — Typestruct NilpotentAnd <: FuzzyLogic.AbstractAndNilpotent T-norm defining conjuction as $A ∧ B = \min(A, B)$ when $A + B > 1$ and $A ∧ B = 0$ otherwise.
ProdAnd
FuzzyLogic.ProdAnd — Typestruct ProdAnd <: FuzzyLogic.AbstractAndProduct T-norm defining conjuction as $A ∧ B = AB$.
Disjunction methods
BoundedSumOr
FuzzyLogic.BoundedSumOr — Typestruct BoundedSumOr <: FuzzyLogic.AbstractOrBounded sum S-norm defining disjunction as $A ∨ B = \min(1, A + B)$.
DrasticOr
FuzzyLogic.DrasticOr — Typestruct DrasticOr <: FuzzyLogic.AbstractOrDrastic S-norm defining disjunction as $A ∨ B = \min(1, A + B)$.
EinsteinOr
FuzzyLogic.EinsteinOr — Typestruct EinsteinOr <: FuzzyLogic.AbstractOrEinstein S-norm defining disjunction as $A ∨ B = \frac{A + B}{1 + AB}$.
HamacherOr
FuzzyLogic.HamacherOr — Typestruct HamacherOr <: FuzzyLogic.AbstractOrHamacher S-norm defining conjuction as $A ∨ B = \frac{A + B - AB}{1 - AB}$ if $A \neq 1 \neq B$ and $A ∨ B = 1$ otherwise.
MaxOr
FuzzyLogic.MaxOr — Typestruct MaxOr <: FuzzyLogic.AbstractOrMaximum S-norm defining disjunction as $A ∨ B = \max(A, B)$.
NilpotentOr
FuzzyLogic.NilpotentOr — Typestruct NilpotentOr <: FuzzyLogic.AbstractOrNilpotent S-norm defining disjunction as $A ∨ B = \max(A, B)$ when $A + B < 1$ and $A ∧ B = 1$ otherwise.
ProbSumOr
FuzzyLogic.ProbSumOr — Typestruct ProbSumOr <: FuzzyLogic.AbstractOrProbabilistic sum S-norm defining disjunction as $A ∨ B = A + B - AB$.
Implication methods
MinImplication
FuzzyLogic.MinImplication — Typestruct MinImplication <: FuzzyLogic.AbstractImplicationMinimum implication defined as $A → B = \min(A, B)$.
ProdImplication
FuzzyLogic.ProdImplication — Typestruct ProdImplication <: FuzzyLogic.AbstractImplicationProduct implication defined as $A → B = AB$.